On the characterizations of cofinite complexes
Appendix

Ken-ichiroh Kawasaki1

1Nara University of Education, Japan

The 35th Japan Symposium on Commutative Algebra,
on December 3, in 2013, 14:30 ∼ 15:10,
Location: Room No. 420, in the Research Institute for Mathematical Sciences,
Kyoto, Japan
The four questions are proposed in the paper [H1, §2] over regular rings. Especially, the following was given as the fourth question:

Question (Hartshorne 1970)

(Fourth Question) Let R be a regular ring of finite Krull dimension and I an ideal of R. Suppose that R is complete with respect to an I-adic topology. Then does there exist an abelian subcategory \mathcal{M}_{cof} consisting of R-modules, such that I-cofinite complexes N^\bullet are characterized by the property “$H^i(N^\bullet) \in \mathcal{M}_{cof}$” for all i?
It is well known that there is a counter example for the fourth question (cf. [H1, § 3, An example, p. 149]).

Example (Hartshorne)

Let ring R and the ideal I be:

$$ R = k[x, y][[u, v]], \quad \text{and} \quad I = (u, v). $$

Then the answer of the fourth question is negative.

The ring R is the formal power series ring over the polynomial ring $k[x, y]$. Notice that the ideal I is of dimension two and generated by two elements in R.
Our theorems propose the positive answer to the fourth question, provided that the ideals are of dimension one or principal over a homomorphic image of a (not necessarily local) Gorenstein ring A of finite Krull dimension, where A is complete with respect to the J-adic topology.

